首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   9篇
  国内免费   20篇
测绘学   14篇
大气科学   30篇
地球物理   81篇
地质学   300篇
海洋学   37篇
天文学   16篇
综合类   13篇
自然地理   25篇
  2023年   3篇
  2022年   29篇
  2021年   32篇
  2020年   14篇
  2019年   25篇
  2018年   34篇
  2017年   47篇
  2016年   43篇
  2015年   20篇
  2014年   37篇
  2013年   47篇
  2012年   30篇
  2011年   24篇
  2010年   18篇
  2009年   16篇
  2008年   15篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   11篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有516条查询结果,搜索用时 109 毫秒
101.
102.
The use of 14C (half-life?=?5,730 years) in modeling the evolution of the 36Cl/Cl ratios in groundwater is reported for the first time. The complexity of the Cl–36Cl system due to the occurrence of different Cl and 36Cl sources and the difficulty of the determination of the initial groundwater 36Cl/Cl ratios have raised concerns about the reliability of using 36Cl (half-life?=?301 thousand years, a) as a groundwater-dating tool. This work uses groundwater 14C age as a calibrating parameter of the Cl–36Cl/Cl decay-mixing models of three wells from the southwestern Great Artesian Basin (GAB), Australia. It aims to allow for the different sources of Cl and 36Cl in the southwestern GAB aquifer. The results show that the initial Cl concentrations range from 245 to 320 mg/l and stable Cl is added to groundwater along flowpaths at rates ranging from 1.4 to 3.5 mg/l/ka. The 36Cl content of the groundwater is assumed to be completely of atmospheric origin. The samples have different Cl–36Cl/Cl mixing-decay models reflecting recharge under different conditions as well as the heterogeneity of the aquifer.  相似文献   
103.
Biosorption is a promising technology for the removal of heavy metals from industrial wastes and effluents. In the present study, biosorption of Pb2+, Cu2+, Fe2+ and Zn2+ onto the dried biomass of Eucheuma denticulatum (Rhodophyte) was investigated as a function of solution pH, contact time, temperature and initial metal ion concentration. The experimental data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The sorption isotherm data followed Langmuir and Freundlich models, and the maximum Langmuir monolayer biosorption capacity was found as 81.97, 66.23, 51.02 and 43.48 mg g?1 for Pb2+, Cu2+, Fe2+ and Zn2+, respectively. The sorption kinetic data followed pseudo-second-order and intraparticle diffusion models. Thermodynamic study revealed feasible, spontaneous and endothermic nature of the sorption process. Fourier transform infrared analysis showed the presence of amine, aliphatic, carboxylate, carboxyl, sulfonate and ether groups in the cell wall matrix involved in metal biosorption process. A total of nine error functions were applied in order to evaluate the best-fitting models. We strongly suggest the analysis of error functions for evaluating the fitness of the isotherm and kinetic models. The present work shows that E. denticulatum can be a promising low-cost biosorbent for removal of the experimental heavy metals from aqueous solutions. Further study is warranted to evaluate its potential for the removal of heavy metals from the real environment.  相似文献   
104.
We develop multiple step ahead prediction models of river flow for locations in Tasmania (Australia) for decision support in aquaculture. In predicting river flows for multiple days ahead, we first statistically determine the maximum input lags of rainfall and river flow. We then use machine learning techniques in building models. In multiple step ahead prediction, we consider both static and dynamic approaches. In dynamic approach, one day prediction is served as input to two days ahead prediction. The experimental results demonstrate that, in general, a dynamic approach provides better accuracy in multiple day’s ahead prediction. For Duck Bay location using dynamic approach, support vector regression performs best over linear regression, M5P and multilayer perceptron. However, at Montagu Bay location, we find that M5P performs best over methods. We find that multiple step ahead prediction of river flow for each location requires modelling of lags with associated machine learning techniques.  相似文献   
105.
106.
107.
A quality study of the drained water from Maddhapara Granite Mine underground tunnel was undertaken to study their hydrochemical variations and suitability for various uses employing chemical analysis, basic statistics, correlation matrix (r), cluster analysis, principal component/factor analyses, and ANOVA as the multivariate statistical methods. The results of chemical analysis of water show the modest variation in their ionic assemblage among different sampling points of the tunnel where Ca–HCO3 type of hydrochemical facies is principally dominated. The correlation matrix shows a very strong to very weak positive, even negative, correlation relationship, suggesting the influence of different processes such as geochemical, biochemical processes, and multiple anthropogenic sources on controlling the hydrochemical evolution and variations of water in the mine area. Cluster analysis confirms that cluster 1 contains 68.75% of total samples, whereas cluster 2 contains 31.25%. On the whole, the dominated chemical ions of first cluster groups are Ca and HCO3, suggesting a natural process similar to dissolution of carbonate minerals. The second cluster group consisted of Cl? and SO4 2? ions representing natural and anthropogenic hydrochemical process. The results of PCA/FA analysis illustrate that different processes are involved in controlling the chemical composition of groundwater in the mine area. The factor 1 loadings showed that pH, EC, TDS, Na, Mg, chloride, and sulfate which have high loading in this factor are expected to come from carbonate dissolution to oxidation conditions. One-way ANOVA describes the significance of dependent variables with respect to independent variables. ANOVA gives us the idea that EC, K+, Fetotal, SO 4 2 , As, and Pb are the most important factors in controlling spatial differences in water quality in this tunnel. But different results have been encountered for different independent variables which might be due to dissimilar sources of water. From the qualitative analysis, it is clear that water quality is not very favorable for aquatic creatures as well as for drinking purposes. The water can be used for irrigation purposes without any doubt as SAR and RSC analysis provides good results. Moreover, the results of this research confirmed that the application of multivariate statistical analysis methods is apposite to inferring complex water quality data sets with its possible pollution sources. At the end, this research recommends (1) as water becomes more and more important, water treatment plants should be built before the water being used; (2) a detailed water step utilization plan should be set beforehand to guarantee tunnel water being used effectively; and (3) after the water being used for agriculture, elements in crops should be monitored continuously to ensure that ions and compounds that come from the tunnel water are lower than guideline values for human beings health.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号